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Abstract 

Ideally, compilers should produce target code that is as good as can be written by hand. 

Unfortunately, this goal cannot be achieved in the usual case, and it’s up to the optimizer to do its best 

job in approximating this ideal situation. 

Traditional optimizing compilers have advanced to the point where the do an excellent job of 

optimizing a single procedure. Accordingly, optimization research has begun to focus on inter-

procedural analysis and optimization. And for OutSystems, the lack of inter-procedural optimizations 

represents a weakness in supporting large-scale applications, with complex inter-procedural 

relationships and modularity requirements. 

In this paper, we present a case study of optimizations in the OutSystems Platform compiler. It is 

presented the theoretic background behind optimization techniques, and it is given focus on designing 

an inter-procedural optimizer for the current OutSystems compiler. 

 

Keywords: Compiler, Optimization, Data-flow analysis, OutSystems, Live variable analysis, Inter-

procedural optimization. 

1 Introduction 

As the complexity of software grows, developers need more powerful tools to help them build 

applications. Such tools generally provide a set of high level primitives for application building, in order 

to minimize the effort of the developer. 

A good tool for creating applications would provide primitives as simple as possible for the developer 

to use. We can take as example the SQL language which enables to manipulate data through the 

SELECT, UPDATE and DELETE statements. This trend in simplifying primitives also applies for any 

development tool, such as frameworks and components, or even IDE’s. But those simplifications, 

necessary to increase development efficiency of modern applications, can often decrease the runtime 

performance of the applications, since they are usually not expressive enough to be used optimally in 

every situation. There are alternatives to balance the oversimplification: 

• Provide alternatives for the high level primitives. For example, in network applications the 

developer usually can choose the adequate level of abstraction to use, selecting a desired 

protocol and using its primitives to design the application. Different protocols are available, and 

each has its pros and cons. 

• Provide primitives that are able to be automatically optimized. For example, the already cited 

querying language SQL provides primitives that are aimed to be transparently optimized by the 

database engine. Modern programming languages provide primitives for memory allocation that 

are able to be optimized both in compile time, and in runtime through garbage collection 

technologies. 

The first alternative requires support for both high level and low level primitives, which requires 

additional costs in designing and maintaining the primitives. It also adds a burden to the developer, 
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which needs to be aware of additional primitives, and needs to decide which set of primitives to use in 

a particular application. 

The second alternative is only possible if the primitives were designed with care, to allow their 

automatic optimization. It uses a technology called optimizing compilers, which aims to reduce 

automatically the runtime inefficiencies, even if the developer is not aware of this process. 

In this thesis we explore the optimizing compiler of the OutSystems platform, in which the main 

concern is the optimization of the performance of web applications, mainly optimizing the database 

access times, and optimizing the size of the data transferred between the browser and the application 

server. 

1.1 Motivation 

As we have seen, the role of the optimizing compiler is to reduce runtime inefficiencies that arise in the 

compiled applications. These inefficiencies can be caused either by bad programming practices, or 

can be inherent to the design of the programming primitives. 

At first sight, it can seem contradictory to have a programming language, by design, impact negatively 

the runtime performance. It could also seem pointless to develop a new optimization technology, just 

to make up for the deficiencies in the programming language. But there are many benefits that arise 

from this point of view. These are: 

• Dissociation between application logic and performance concerns. If an optimization process 

is added to the compilation of the application, the development can focus on the application logic, 

and leave the performance concerns be addressed by the automatic optimizer. This approach 

requires less development resources, produces clearer code, and with a lower maintenance cost. 

• Benefit from optimizer evolution. As the optimizer process is improved, because of advances in 

the optimization research, all applications would benefit of it, without extra development effort. 

• Simplification of the programming language. Programming languages are used to develop 

applications which will run in computers with limited resources. When designing a programming 

language, the limitations in the current computers should be kept in mind, and the primitives 

should be flexible to be used without performance losses in a variety of scenarios. But if an 

optimizer compiler is provided for the programming language, the language primitives can be 

simplified, by hiding from the developer the optimizations that are automatically handled. Ideally, 

the language could be designed for its logic behavior, ignoring completely the limitations of the 

runtime environment. 

It should be clear that completely freeing the developer from the performance concerns is not the aim 

of the optimizer compiler. For instance, the choice of the most suitable data structure or algorithm will 

always be an issue handled by the developer of the particular application. But having automatic 

optimization techniques allows raising the abstraction level of a language, and helps reducing the 

development effort. 
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1.2 Objectives 

The scope of this work is to extend the existing OutSystems optimizing compiler, implementing inter-

procedural optimization techniques. 

An algorithm is designed to solve the inter-procedural optimizations relevant to OutSystems. In this 

paper, we will study the properties of the algorithm, implement it, and investigate its static effects when 

compiling real-world applications. Although it would be much more relevant to know the runtime 

effects of the inter-procedural optimizer – such as gains in runtime application memory usage, or 

increased performance – it would require us to analyze not only the application itself, but the users 

and the processes which interact with the application. Thus we follow a more pragmatic measure of 

the gains of an application, by analyzing it statically. 

We also point directions that could be followed as a continuation of this work. 

1.3 Structure of the Document 

The paper begins with chapter 1, as an introduction to the problem being solved, giving emphasis on a 

motivation for approaching the problem. 

In chapter 2, it is formally defined the problem of the inter-procedural optimizations in the OutSystems 

compiler. We present a solution that allows inter-procedural optimizations in OutSystems compiler. 

Finally, the measured results of the implementation are shown. 

Chapter 3 proposes future work that should be done to improve the current implementation, together 

with ideas that could complement it. 

At last, the conclusions of the paper are stated in chapter 4. 

2 Inter-procedural Optimizations in OutSystems Compiler 

In this chapter, we investigate the problem of optimizing procedure calls in the OutSystems language. 

We propose a solution to the problem, and its implementation. Finally, we show the results obtained 

by the chosen solution in real applications. 

2.1 Objective of the OutSystems Compiler 

In previous sections, we motivated the reader for the data transferring bottleneck in traditional web 

applications. These data transfers can become a bottleneck mainly in two distinct cases. 

• Data being transferred from the database to the application, as a result of a query. 

• Rendered data transferred from the application to the client browser. 

We have already mentioned that the OutSystems language defines two data querying primitives, and 

that both have design limitations that require an optimizing compiler to overcome. Let’s rephrase what 

concerns the optimizer about database transferring. 
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• The optimizer should decide the optimal projection to be used in the underlying SELECT SQL 

query. To accomplish this task, it needs to retrieve information about the usage of the output of the 

query in the application, and decide what are the relevant tables and columns in the projection. 

• It is desirable to differentiate between a query whose output is never iterated, or iterated only 

once, or multiple times. Knowing about the iterations of a query helps the optimizer to choose 

whether to fetch the rows one at a time, or all at once. 

To optimize the rendered data, we should optimize the viewstate storage, by serializing only the data 

that is needed. Thus, the compiler needs to know if a given variable can be used after the request is 

sent to the browser. 

2.2 Algorithm 

In order to introduce the algorithm used by the inter-procedural optimizer, we first start by some 

notation and definitions. 

The following definitions describe the structure of a program, in what concerns the optimizer. 

Definition 1 – Program ����. A program � is a set of procedures, � = {P1, P2, …, PN}. 

Definition 2 – Variables of a program ����. By �(�) we denote the set of all variables of a 

program �. 

Definition 3 – Variables of a procedure. Given a program � and a procedure P ∈ �, we 

denote var(P) ⊂ �(�) as the set of variables local to procedure P. The output of query 

primitives, and the outputs of procedure calls are also variables. 

Definition 4 – Input parameters of a procedure. Given a program � and a procedure 

P ∈ �, we denote in(P) ⊂ �(�) as the set of input parameters of P. 

Definition 5 – Output parameters of a procedure. Given a program � and a procedure 

P ∈ �, we denote out(P) ⊂ �(�) as the set of output parameters of P. 

Definition 6 – Call graph. For a given program �, we can construct a call graph, which is 

an directed graph with a node for each procedure P ∈ �, and one edge P→Q if P calls Q. 

We should clarify that the set of variables of two procedures are not generally disjoint. When a 

procedure P calls another procedure Q, the output variables of Q become part of the variables of P. 

Lets state this in a corollary. 

Corollary 1 – Inter-procedural scope of variables. Input parameters of P are available 

only in the scope of P. Output parameters of Q are available in the scope of P if and only 

if P calls Q. Formally, we have in(Q) ⊂ var(P) if and only if P = Q, and out(Q) ⊂ var(P) if 

and only if P calls Q. 

The procedural optimizer algorithm, which deals with optimizations local to procedures, is responsible 

for finding the set of used variables inside a procedure P. It evaluates the liveness of each variable in 
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every point of the procedure. We now define the properties that are relevant for the variables handled 

by the optimizer. 

Definition 7 – Used variables. A variable v ∈ var(P) is said to be used inside procedure P 

if it is live in at least one point after its definition in P. 

Definition 8 – Local usage predicate. For a given procedure P, we define a function 

called local usage predicate ϕP: var(P)→{true, false}, defined as to have ϕP(v) = true 

if and only if v is used inside P. We might omit the subscript when the procedure P can be 

clearly inferred from the context. 

Definition 9 – Inter-procedural usage predicate. For the program �, we define a 

function called inter-procedural usage Φ: �(�)×�→{true, false}, defined as follows: for 

every two procedures P, Q ∈ �, and a variable v ∈ Q, we have Φ(v, P) = true if and only 

if v is used inside P. Moreover, we define this function only for input and output 

parameters of the procedures. 

Definition 10 – Total inter-procedural usage predicate. For the program �, we define a 

function called total inter-procedural usage Φ : �(�)→{true, false}, defined as 

Φ (v) = true if and only if v is used in at least one of �’s procedures. The function Φ  can 

also be defined as ∑
∈

Φ=Φ
�P

)P,()( vv , where the Σ operation stands for the boolean OR. 

With the definitions in hand, we are now able to characterize the procedural optimizer algorithm. We 

do not present its implementation, as it is outside the scope of the work, but it follows a modification of 

the data flow solving algorithms described in the literature. Nevertheless, we describe its relevant 

properties, which it needs to satisfy in order to be used in the inter-procedural optimizer. 

Function procedureOptimize 

Inputs: Procedure P; Total inter-procedural usage Φ  

Outputs: Local usage ϕ 

The function procedureOptimize optimizes a given procedure P, and outputs the computed local 

usage predicate for the procedure P. It additionally uses the total inter-procedural usage predicate Φ  

in order to be able to optimize the inter-procedural boundaries. It should also obey the following 

corollary: 

Corollary 2 – Dependencies of the local usage predicate. The local procedure usage 

ϕP for a given procedure P depends only of the P structure, the inter-procedural usage of 

its output parameters, and the inter-procedural usage of the input parameters of the 

called procedures. 

Corollary 2 follows directly from the definition of liveness. In the scope of a procedure, the definitions 

of variables flow either to its output parameters, or to the input parameters of other procedures. Thus 

Corollary 2 is not an additional requirement for procedureOptimize. 
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We now present the inter-procedural optimizer, which uses the function procedureOptimize 

iteratively to refine the inter-procedural usages of the program. 

Function optimize 

Inputs: Program � 

Outputs: set of used variables of � 

Algorithm: 

L1 call-graph ← buildCallGraph(�) 

L2 initialize Φ(0) such that: 

 v ∈ in(P) ⇒ Φ(0)(v, P) is true 

 v ∈ out(Q) and P calls Q ⇒ Φ(0)(v, P) is true 

 otherwise Φ(0)(v, P) is false 

L3 i ← 0 

L4 while i = 0 or Φ (i) ≠ Φ (i-1) do: 

L5  i ← i+1 

L6  Φ (i) ← Φ (i-1) 

L7  for each P ∈ � do: 

L8   ϕP
(i) ← procedureOptimize(P, Φ (i)) 

L9   for each v in in(P) do: 

L10    Φ(i)(v, P) ← ϕP
(i)(v) 

L11   for each Q ∈ � such that P calls Q do: 

L12    for each v in out(Q) do: 

L13     Φ(i)(v, P) ← ϕP
(i)(v) 

L14 output {v ∈ �(�) | ϕP
(i)(v) is true for some P ∈ �} 

In line L1, we build the call graph of the program. The call graph is an important data structure for 

inter-procedural problems, since it synthesizes the calls between the procedures of a program. In this 

algorithm, it can be used to efficiently tell if a procedure calls another. 

The initialization in line L2 represents the pessimistic assumption that all input and output parameters 

are potentially used, in the conditions of Corollary 1. 

In L8, the procedural optimizer is called for a procedure P, and returns information about the usages 

inside P. All the following lines, from L9 up to L13, stores into Φ
(i)

 information about the inter-

procedural variables used inside P. They use Corollary 1 to cut down the number of updates to Φ
(i)

. 

Finally, in line L14 after the stabilization of the algorithm, we find all the variables of the program � 

which are used inside some procedure P. For each procedure, we use its most recently calculated 

local usage predicate ϕP
(i)

, to discover its used variables. 

2.2.1 Improvements 

When optimizing a procedure P, there could be two distinct cases where an inter-procedural 

optimization can take place. The first one, is that any variable v which is used only by an output 
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parameter o, ceases to be live when Φ (o) = false. The other case, where a variable v is used as 

input parameter i to a procedure Q, and Φ (i) = false implies v being not live. The optimization of v 

could eventually affect Φ , and open opportunities for other optimizations in other procedures. 

We can describe this effect as a flow in inter-procedural optimizations, where a single optimization 

implies a chain of other optimizations. 

It is interesting if we could perform the entire chain of optimizations in the same iteration. That 

becomes possible if the procedures are optimized in the same order as the chain of optimizations. So 

let’s introduce the topology of the graph which holds the possible optimization chains. 

Definition 11 – Inter-procedural chain. We say that there’s an inter-procedural chain 

from procedure P to procedure Q, with P ≠ Q, if a change in Φ(P, v) from true to false 

implies a change in ϕQ for some variable v ∈ var(P). 

Definition 12 – Inter-procedural chain graph. The inter-procedural chain graph is a 

directed graph, with a node for each procedure P, and an edge from P → Q if there’s an 

inter-procedural chain from P to Q. 

Theorem 1 – Inter-procedural chain graph topology. Given a program �, and its call 

graph G, we define G
-1

 as being a directed graph with a node for each procedure, and an 

edge P → Q if one of P → Q or Q → P is an edge of G. Then the inter-procedural chain 

graph is a sub graph of G
-1

. 

Proof. Theorem 1 is equivalent to say that there’s an inter-procedural chain from P to Q, 

only if either P calls Q or Q calls P. 

In fact, it follows from Corollary 2 that changing the value of Φ(P, v) for v ∈ in(P) could 

possibly impact the callers of P. Also because of Corollary 2, if P calls Q, then changing 

the value of Φ(P, v) for v ∈ out(Q) could have implications Q’s local usage. This proves 

that there’s an inter-procedural chain from P to Q if P calls Q, or Q calls P. 

On the other hand, if P doesn’t call Q, and Q doesn’t call P, it follows from Corollary 2 that 

neither procedure can have influence on the local usage of the other.■ 

Finding a linear ordering of the inter-procedural chain graph is not always possible, because it is a 

cyclic graph. But we can at least improve the ordering to meet a subset of the chain. By spanning a 

maximum acyclic sub graph of G
-1

, we are able to determine a linear ordering of the procedures, which 

is coherent with a subset of the possible chains. The criteria for determining the spanning tree can be 

arbitrary. 

Other improvement which can be made to the algorithm is to note that, from Corollary 2, the 

calculation of ϕP
(i)

 in line L8 depends only in the inter-procedural usage of the inputs of the procedures 

called by P. It follows that, if these usages do not change from iteration i-1 to iteration i, the predicate 

ϕP
(i)

 will be equivalent to ϕP
(i-1)

. This property is useful, so we can avoid recalculating the usages of 

procedures that are already stable, and focus on the procedures that can be further optimized. 
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2.3 Results 

All results were obtained by using a PC with processor Intel Pentium 4 at 2.8GHz, 2GB of RAM 

memory, and running Microsoft Windows XP with Service Pack 2. The system had OutSystems 

Platform 4.0 .NET installed, with Microsoft SQL 2005 installed locally to support the applications. 

The new algorithm suffers from a 7% of increase in memory requirements. The compilation time was 

also risen by 5 seconds, which is 10% of the average compilation time. 

The query optimizations gains, when compared to the old algorithm, vary from 0% in EMS_Tennet.oml 

to 25,75% in EMS_ProdProfile.oml. The average static gain in the applications tested was 7%. 
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Figure 1 – Comparison of the gains in query identifiers between the inter-procedural optimizer and the 
original algorithm. 
The figure shows the relative gains of the tested applications, when a comparison is made between the original 
compiler, and the inter-procedural compiler. 

The chart in Figure 2 shows the convergence of the applications in the inter-procedural algorithm. 

Each application took a maximum of 4 iterations. It is interesting that, on the average, 66% of all inter-

procedural optimizations of an application will occur in the first iteration. 
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Figure 2 – Normalized convergence of the individual applications for the inter-procedural optimizer. 
The chart presents the iterations of the applications, and the percentage of used query identifiers in each iteration. 
The reference value, 100%, is the result which would be obtained by the original algorithm. 
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3 Future Work 

The current implementation of the algorithm in the product lacks support for partial compilation, which 

is a feature of the OutSystems Platform. It allows compiling only the modified procedures of an 

application and maintains the unmodified procedures from a cache. Related work already exists in the 

area of partial compilation. The authors of [9] use a framework to store the inter-procedural information 

upon compilation, and to track the changes to the procedures source code. 

We could also perform better optimizations if we specialize the procedures for some frequent usages, 

following an approach similar to procedure inlining. For such modification of the algorithm, we should 

be able to determine statically which are the most profitable specializations. We could come up with a 

heuristic to cluster the usages of a procedure. Whenever a procedure P is called, we determine what 

is the subset O of outputs used in the call site. Then we determine the N most frequent subsets in the 

whole application, and specialize those procedures. 

Another way to deal with specialization is to dynamically select which specialization is preferred when 

invoking the procedure in runtime. Suppose we have a procedure P, and we compile some arbitrarily 

chosen specializations P1, P2, …, PN, optimized for output usages O1, O2, …, ON. When a procedure 

calls P, it provides the set of needed outputs in that particular call site. In runtime, the OutSystems 

Platform could decide which specialization fits in the requirements of the call being made. 

We could also use statistical data for an application to base our optimization strategy. For example, 

we could store analytical information about an application in runtime, and use it to make static 

decisions when compiling newer versions. 

4 Conclusion 

The main objective of this work, which was to implement inter-procedural optimizations in the 

OutSystems compiler, has been achieved successfully. 

We have presented concrete results, which show that the inter-procedural optimizer performs better 

than the original compiler, according to our static measures, by providing 7% more optimizations over 

the query fields. It was also shown that, for the average of the tested applications, the proposed inter-

procedural optimizer uses 7% more memory than the original, and in average spends 10% more on 

the compilation time.  

Because it was built upon the old procedural optimizer, it involved very few architectural changes, 

highly reducing the risk and cost of the project. Given the current dimension of the compiler, which has 

more than 70000 lines of C# code, its modularity is becoming a concern. 

The inter-procedural optimizer adds a great value to OutSystems product, because now the users of 

the OutSystems platform are able to create structured applications, without the performance issues it 

would incur without inter-procedural optimizations. This work is also a strategic step for optimizing the 

interfaces between two OutSystems applications. 

We are also aware of the bad practices building the OutSystems applications because of lack of inter-

procedural optimizations. We believe that the optimization rate of 7% we have obtained could be 
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increased if the applications were better planned, and designed following encapsulation and well-

defined interfaces. 
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